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NOMENCLATURE

Symbols
a coefficient for the inlet turbulence kinetic
energy, Eg. (2-40)
AE NJAN AS coefficients 1in the general finite difference
eguations, Eg. (5-5)
C ¢C C ¢ convective coefficients in the finite difference
e w n-s expressions, Eg. (5-3)
cp pressure recovery coefficient
C, C, Cu‘ constants in the turbulence model eqguations
D inlet diameter
D. D Q1Ds diffusive coefficients in the finite difference
e v expressions, Eg. (5-4)
Du DV coefficients in the finite difference momentum
equations, Eg. (5-14)
E roughness parameter in the log law
F F convective terms normal to control volume bound-
£ n aries
G rate of production of the turbulence kinetic
energy
g flux through zonal boundary
J Jacobian of the transformation
k turbulence kinetic energy
X unit normal perpendicular to the (§,n) plane
1 turbulence length scale
m swirl intensity
mp mass source of a control volume
T 7 unit vector normal to a constant £ line and a
& n constant n line
P p instantaneous and mean pressure
p' corrective vaule of p, Egq (5-10), or pressure
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Pe

Q
Re

Us

u,

Gr

=

fluctuation, Egq
Peclet number

source terms in
Reynolds Number

position vector

(2-15)

grid generation equations

of a point on the coordinate line

volumetric source term of the general variable

arc length along a line

time and time interval

tensor notation of the instantaneous velocity,
mean velocity and fluctuating velocity

velocity components in x, r, 8 directions

average inlet velccity

friction veleocity

velocity at point p

cylindrical coordinates

two dimensional

tensor notation

coordinates

of the coordinate

distance from the wall to point p

dimensionless distance from the wall to point p

eek Letters

R
to
]
u; Uy
V, W
r e
Yy
B vy
Ut Veff

coordinate transformation parameters

Kronecker function

turbulence energy dissipation

Von Karman constant in the log law

coefficient in Eg (2-41)

molecular, turbulent and effective viscosity

viscosity fluctuation
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E n curvilinear coordinates

o density

Ty effective diffusivity for general variable

% % effective Prandtl number for turbulence kinetic
energy and dissipation energy

rij ij tensor notation of the shear stress

T shear stress on the wall

® ¢ ¢ general dependent variable: instantaneous value,
mean value and fluctuating value

x v grid spacing contrcl parameters

Subscripts

EWNS east, west, north and south grid point

ewns east, west, north and south boundary of a control
volume

) center grid point

¢ general dependent variable

Superscripts

o coarse grid

f fine grid

p pressure

u u velocity component

v v velocity component

average value
preliminary wvalue

corrective value
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CHAPTER 1
INTRODUCTION

1-1 Motivation and Purpose of Research

Turbulent recirculating flows occur in many engineering and
industrial applications. For example, such flows are found
in hydraulic chennels, power plant furnaces and in gas tur-
bine engine combustors. To improve performance in such
applications, an accurate description of the flow patterns
are required. Because it 1is both difficult and costly to
make detailed flow measurements under real operating condi-
tions, numerical simulation becomes an extremely valuable
toocl for visualizing the flow. Basically, the simulation is
rejguired to solve the time averaged Navier-Stokes equations
along with a turbulence model equation or equations for the
detailed patterns of the flow.

Over the years, numerical computation of turbulent
recirculating flows has been an active research subject.
Significant develcpment has taken placed since the introduc-
ticn of the turbulence k-¢ model {1l] in 1974. The solution

procedure [2] has steadily evolved and now uses the finite

——

volume approacnh to discretize the differential equations and

gorithm fo solve for the velocities and

[

employs the SIMPLE a
the pressure. Recently, efforts have been principally

directed towards improving the accuracy and efficiency of



the computation.

The finite volume approach requires that a proper
finite difference operator be available to represent the
convection transport terms. This operation is necessary in
order to prevent oscillatory solutions. It has been found
that implementation of one-sided (upwind) differencing will
generally give stable solutions. However, it is also real-
ized that thﬁs scheme augments the diffusive effect in the
crossflow direction and recuces the numerical accuracy of
the results. Finite difference methods that have been

developed for the purpose of suppressing the diffusion error

include the skew upwind scheme [3], the quadratic upwind
scheme [4], and cther higher order methods [5]. These
higher order schemes, while very promising, are in many

cases controvarsial because they produce questionable
resuls, particularly for complex flows.

Until a few years ago, most turbulent flow studies
dealt with flow in resgular shaped geometries in which the
boundaries coincided with the coordinate lines of either a
Cartesian or cylindrical coordinate system. For irregularly
shaped flow domains, since mesh points may not fall on the
boundaries, a relatively large amount of computation in the
form of interpolation was required.

Numerical grid generation has been developed to tackle
flow problems in irregular geometries. By this technique, a
grid system is numerically generated which permits the gov-

erning equaticns to be ccmputed on a uniform mesh without



using interpolation for the boundary points. When the grid
is generatd by locating points along the boundary surfaces,
it is termed a body-fitted coordinate procedure.

Applications of the body-fitted coordinate transforma-
tion to turbulent flow problems have appeared in the recent
literature. But comparison between predicted results and
measured values 1is still quite limited. In addition, many
factors, such as the differencing method and the grid dis-
tribution, both 0f which have a vital effect on the numeri-
cal soluticns of complex flows, have not been thoroughly
investigated. Thus, one objective of the present research
was to develop and test various numerical methods for calcu-
lating the properties of turbulent flows in irregular geome-
tries.

Grid generation does help to simplify problems having
arbitrarily shaped boundaries. It is obvious that as the
geometry becomes more complex, the grid generation also
becomes a tougher task. Construction of a single grid sys-
tem that covers the entire flowfield would be very difficult
for complicated flows such as the flow passing over an air-
craft or through a gas turbine combustor with several pas-
sages. In such cases, a better approach would be to divide
the field intc several subregions and generate an indepen-
dent grid for each subregion. Grid generation would there-
fore be a much easier process. This method has been
referred to as a zonal apprcach or a grid patching technique

and is gradually attracting attention in computational fluid



dynamics pursuits. With the zonal approach, the grid in
some regions can be refined to obtain better quality solu-
tions without affecting the calculation in other regions.
Moreover, this approach permits the use of different compu-
tational methods more suited to each of the zones.

Application of the zonal approach has been implemented
in Euler equation calculations, but has not yet been
reported fof turbulent flows. Recently, Shyy [7] under-
scored the need for using zonal grid methods in turbulent
flow computations. Shyy simulated turbulent flow in an
annular dump diffuser. He found that a single grid system,
generated over the whole domain, caused the grid density in
the annular tube to be much larger than that in the dump
region. Moreover, he experienced difficulty in refining the
grid in wall regions. This problem could be alleviated
using a zonal grid approach that divides the dump diffuser
into two regions: a dump region with a fine mesh and an
annular region with a coarse grid.

The division of a given field into subregions intro-
duces grid boundaries in the calculation domain. Since
either grid lines or transformation metrics may not be con-
tinuous at the interface of any two zones, care must be
exercised in treating interface points in order to transfer
information accurately. In fact, proper zonal boundary
treatment is a key ingredient for successful application of

this technique.



1-2 Previous Work
There have been several attempts to solve turbulent flow
problems by using coordinate transformation and grid genera-
tion. A diffuser flow was analyzed by Pope [8]. He pre-
sented the transport equations in an orthogonal coordinate
system. However, the dependent variables were maintained in
their Cartesian coordinate form rather than expressing them
in the contravariant form of curvilinear coordinates. This
representation erabled the formulation to be cast into a
strong conservation form. Since no additional terms arose
due to stretching the coordinates, the same solution proce-
dure as used in Cartesian coordinates could be employed.
Demirdzic et al. [9)] used a different approach in which
the equations were expressed in a general form with contra-
variant velocities and the metric tensors of the coordi-
nates. This presentaion had more flexibility in handling
the boundary conditions. However, the transformed equations
became lengthy and complicated due to the appearance of cur-
vature source terms. Also, the formulation was found to be
non-conservative, i.e., was not written in divergence form.
The flow in a reciprocating internal combustor engine was
studied, but the results were only explained qualitatively.
Quantitative analyses of turbulent flow with various
swirl conditions in cdiffusers were carried out by Habib and
Whitelaw [10] and by Hah [11]. Habib and Whitelaw calcu-
lated the flow pattern and turbulence intensity for differ-
ent configurations of wide angle diffusers. The momentum
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equations and the k-e turbulence model equation were formu-
lated in orthogonal coordinates, the same approach as used
by Pope [8]. For non-swirling conditions, the predictions
for the mean velocity compared very well with experimental
measurements, but predictions of the turbulence kinetic
energy were not in good agreement. The results for swirling
flows were not as accurately predicted as in non-swirling
flows. Both mean velocity and turbulence energy were under-
estimated and the size of the central recirculation bubble
was overpredicted.

Hah [1l1l] investigated the flowfield in small angle dif-
fusers. The eguations were expressed in the same manner as
Demirdzic et al. {9], i.e., in general curvilinear coordi-
nates. The turbulent preoperties were simulated by the alge-
braic Reynolds stress model with corrections on the coeffi-
clents to account for the effect of streamline curvature.
In addition to the hybrid scheme, Hah used the quadratic
upwind scheme and the skew upwind scheme to test for numeri-
cal diffusion. Comparing predictions with measurements, Hah
concluded that only the quadratic upwind and the skew upwind
schemes could give reliable predictions. The hybrid scheme
generated excessive numerical diffusion and underpredictd
the central bubble size by almost 30%.

Shyy and Correa [12] studied the impact of numerical
schemes and grid systems on the solution accuracy and sta-
bility. They used different methods, including first order

upwind, second order upwind, skew upwind, quadratic upwind,



and central difference schemes, to interpolate the
convective terms in simple advection problems. The results
indicated that the hybrid method had a large spreading rate
in the crossflow direction and induced substantial errors in
the solution. For other schemes, the accuracy was dependent
upon the partieular problems studied and upon the form of
the boundary conditions. Calculations were also presented
for turbulent flow in a twoc-dimensional gas turbine combu-
stor. The influences of grid distribution and the differ-
encing method on results were demonstrated.

Syed et al., {(5] and [6], investigated numerical diffu-
sion in a variety of flow problems. They found that numeri-
cal accuracy was dependent upon the flow field and mesh
placement. The flow angle alsoc had an effect on the accu-
racy for a given ccmputational scheme.

A further investigation of turbulent flow in a dump
cdiffuser was conducted by Shyy [7]. He performed calcula-
tions on two levels of grid points and found that a coarse
grid produced better agreement between the numerical pre-
dictions and the experimental data than did a fine mesh.
Also, a lower order hybrid difference scheme produced better
results than did higher order schemes.

In view of the published results, it may be concluded
that consistent turbulent flow predictions are still far
from routine. The influence of grid systems or computa-
tional methods remains unresolved and continues to be a

worthwhile subject for exploration. One such area that has



not received much attention is the used of structured grids
in which the flow field is partitioned into zones. Some
zones may have a coarse grid while others a fine mesh struc-
ture. It is believed that this provides better ultization
of the grid.

The idea of zonal grids is not new; however, it has not
been applied to turbulent flows. Hessenius & Pulliam [13]
applied the ional grid method to the solution of Euler equa-
tions. Their results stressed the need of a conservative
treatment at the zone interface. Rai, [14] and [15], later
developed a conservative zonal boundary scheme using inte-
gration and interpolation methods to update the values of
grid points at the zonal interface. The scheme was applied
o Euler equation calculations for the case of supersonic
flow over a cylinder, blast wave diffraction by a ramp and
cne dimensional shock-tube flow. Atta and Vadyak [16]
solved a three dimensional potential flow over an isolated
wing and a noninteracting wing/pylon/nacele configuration.
They generated an overlapped grid region and let the flow-
field information be transfered through this region. An
interpolation technigque was employed to approximate the
zonal boundary values.

Transonic flow over an airfoil was analyzed by Berger
and Jameson {17]. Instead of grid patching, they used an
automatic adaptive grid refinement method. The residual at
any control volume was monitored after each iteration. 1f

the residual was found to be large, grid refinement was



imposed on that control volume and the control volume was
divided into four smaller cells. This procedure created an
interface between the fine grid and the coarse grid. Berger
and Jameson studied a number of methods for treating the
interface and concluded that a conservation approach that
involved an interpolation for the value at the cell center
and the summation/integration for the flux at the cell
boundaries represented the best choice of the methods inves-
tigated. They also found that when a non-conservation form
was used for the interfacial treatment, the predicted drag
coefficient differed by as much as 20% from the value found

by using a conservation approach.

1-3 Outline Of The Thesis

This study is aimed at the development and verification of
numerical methods which include a zonal grid approach for
turbulent flow computations in combustor geometries. The
effort is to be accomplished by solving a set of non-linear
partial differential equations which include the continuity,
momentum, and turbulence equations in a general curvilinear
coordinate system for both a single grid and a zonal or par-
titioned grid.

In the next chapter the formulation of the governing
equations together with their boundary conditions is pre-
sented. A short discussion of turbulence models is also
included. Chapters 3 to 6 are devoted to the solution
method for the flowfield calculation. Chapter 3 presents

S



the method of grid generation while the transformation of
the governing equations and the boundary conditions is dis-
cussed in Chapter 4. The computational procedure will be
depicted in chapter 5. The finite volume approach and the
SIMPLE algorithm are used to facilitate the pressure compu-
tation. Chapter 6 deals with zonal grid boundary treatment.
The proposed method contains the generation of an overlap
region between two grid zones and an interface operator that
permits numerical information to be transferred accurately
while preserving the conservation principle. The presenta-
tion of the results of the computation for both single grid
and zoned grid systems is given .in Chapter 7. Results were
compared against experimental measurements. Finally, the
conclusions of this study and recommendations for further

work are discussed in Chapter 8.
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CHAPTER 2
GOVERNING EQUATIONS AND TURBULENCE MODEL

2-1 Time Averaged Continuity and Momentum Equations
The partial differential equations governing instantaneous

turbulent flow are given in general Cartesian form as:

. 3 3 - _
Continuity 5%'*3;;0U1 0 (2-1)
Momentum 2—;ﬂh + ~l—pU-U.==- 2., (2-2)
at J 3x‘i 17J ‘ax,i 1]
aU. al. al
j 2 1
here .= Pg.. = ple—— + — £ — 5., -
where 113 Po1J “(axj ax.i) t 3 X, 613 (2-3)

and éij is the Kronecker function, which equals 0 for i # j,

and 1 for i = j.

Due to the very small scale of turbulent motion and its
rapid movement, direct simulation of the above equations
would reguire an enormous amount of computer time and stor-
age, and is, more than likely, not possible. A turbulent
flow property, ¢, can be identified in terms of its mean
component, ¢, and its fluctuating component, ¢'. This is

known as Reynolds decomposition and is written as:
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6=¢+¢'
to

where ¢ =J—0f¢dt
0

In this expression,

(2-4)

(2-5)

to 1s a time interval which is large

when compared to the time of the turbulent oscillations.

The introduction of Reynolds decomposition allows the gov~-

erning equations to be expressed in the more desirable time-

averaged form

instead o¢f as instantaneous wvalues.

where the variables appear as mean values

For an incompressible

flow, the time-averaged egquations of continuity and momentum

take the form:

. 3
- .= 2-6
Continuity X pU 0 ( )
Momentum 2 pu.u, = = 2 C:: =~ 2 puiul (2=7)
axi 1] ax_i 1] ax,i 173
U, u . du
here - ooy (Y ey 2
whe %5 j Péjj — v (axj axi) 3 ”ax] i3
au! su! u!
' 1 J 2 1
'“(axj ) T v i (2-e)

Neglecting the fluctuations in the laminar viscosity, i.e

terms containing u',

the expression for o

12
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form as rij in Equation (2-3), but with all the wvariables
time-averaged.

The process of time averaging produces additional
terms, EIG;, in the.momentum equations. These terms, called
the Reynolds stresses or the turbulent stresses, represent
he additional -momentum transport due to turbulent motion.
Equations (2~6) and (2-7) can be solved for mean values of
velocity onl? when the Reynolds stresses are known. This is
called the closure problem. Many articles have been written
in which the Reynolds stresses have been modeled in terms of
known gquantities or mean flow values. The suggested models
range from simple algebraic expressions to sophisticated
partial differential equations. They not only give mathe-
matical expressions to calculate the stresses but also pro-
vide physical information about the turbulence. However,
the more information the model contains, the more complex it
becomes. Because the choice of the model is vital to the
resulting predictions, a brief review of turbulence models

will be presented in the following section.

2-2 Turbulence Models

2-2-1 Preview

Basically, turbulence models can be divided into two catago-
ries according to whether the Reynolds stresses are derived
from an eddy viscosity concept or determined from the trans-

port equations for the stresses themselves.
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The eddy viscosity concept was introduced by Boussinesg
18] in 1877. He assumed, in analogy to molecular viscosity
for laminar flow, that the turbulent stresses are propor-
tional to the mean velocity gradient. The proportionality
constant is termed the eddy viscosity u. A general form of

this concept may be expressed as:

, Bui

- 1 = e
pUSUS T M lgX,

j (2-9)

du.
Jy . Z .
* axi) 3 °k613

where k 1is the normal stress or the turbulence kinetic

energy defined by:

=]_ gt -
k 5 usul (2-10)

The turbulence normal stresses act like pressure, so when
Equation (2-9) is used to eliminate G?J& in the momentum
equations, the normal stresses can be absorbed into the
pressure term and need not be calculated explicitly.
Boussinesqg's concept, however, does not resolve the
closure problem for there remains an unknown: the eddy vis-
cosity. Eddy viscosity, unlike the molecular viscosity, is
not a property of the fluid, but depends upon the flow con-
ditions. It is a function of factors that influence the

detailéd patterns of turbulence and deviating velocities,

and it is sensitive to the intensity and the length scale of

14



the turbulence. Molecular viscosity can be measured on an
isolated sample of fluid; eddy viscosity can only be
obtained by experiments on the flow itself or through calcu-
lations based on certain hypotheses. Consequently, turbu-
lence modelling following this approach concentrates on
determining the variation of viscosity.

The first important advance in the determination of
eddy viscosity was Prandtl's mixing length theory [19). The
basis of this theory was that certain characteristics of a
turbulent flow resembied those found in molecular interac-
tions. Thus, he used the kinetic theory of gases as a model
to describe local turbulent exchanges. He assumed that eddy
viscosity, like molecular viscosity, was a function of den-
sity, length scale and velocity. However, Prandtl intro-
duced a length scale he called the mixing length into the
derivation for eddy viscoesity. The mixing length parallels
the mean free path for molecular viscosity and physically
represents the distance a packet of fluid moves before giv=-
ing up its momentum to the surrounding fluid. Further, he
assumed that the turbulent velocity was a product of mixing
length and mean veleccity gradient. Accordingly, Prandtl

obtained the following expression for the eddy viscosity:

3y (2-11)

where 1 is the mixing length and %i} is the mean flow veloc-

15



ity gradient. It has been found that the mixing length
theory applies very well in turbulent shear flows which have
a single length scale, but it is not suitable for most tru-
bulent flows. Tennekes and Lumley [20] have presented a
very critical examination of the mixing length theory. An
obvious limitation occurs when attempting to calculate flow
in the center of a pipe, where the velocity gradient is
zero. At thﬁs location, mixing length theory gives a zero
eddy viscosity. This is clearly incorrect because turbulent
mixing does not vanish in this region of the flow.

To overcome the more obvious limitations with the mix-
ing length theory, turbulence models were developed which
account for the transport of turbulence guantities. These
quantities can be determined from the solution of their cor-
responding partial differential equations.

In general, a turbulent field can be characterized by
two parameters: turbulence intensity and the size or length
scale of the turbulent eddies. Turbulence intensity 1is
measured by the root mean sgquare of fluctuating velocities
and refers to the energy contained in an eddy. The length
scale of an eddy is obtained from integration of velocity
correlation functions. The equations for both gquantities
can be derived from the Navier-Stokes equations by making
appropriate assumptions. The length scale equation, how-
ever, can not be presented in a closed form and consquently
can not be applied directly.

Examining the process affecting the length scale of

16



eddies suggests that the dissipation rate of turbulence
energy is an important parameter in turbulent exchanges.
The dissipation of energy destroys small eddies and thus
effectively increases the average eddy size. From an energy
balance of the rate of supply and dissipation over small
scale eddies, the size of an eddy can be obtained as a func-
tion of turbulence energy and its dissipation rate; hence,

(20},

(2-12)

where ¢ 1s the dissipation rate of turbulence kinetic

energy, defined by

e = (2 (2-13)

Equation (2-12) effectively removes the length scale from
the problem, replacing it with the dissipation rate. The
latter has been found to be more readily estimated than is
the former. A turbulence model based on the solution of the
differential equations above for one or two quantities has
been proposed by many researchers, e.g., Prandtl ([53] and
Rodi [54). These models are now widely referred to as one
or two equation models. The model in terms of both quanti-

ties, k and ¢ , developed by Harlow and Nakayama [23] and

17



Jones and Launder [24], has received broad recognition and
is now commonly known as the k-t model.

Another approach, which does not use the eddy viscosity
concept, attempts to determine the Reynolds stresses from
the solution of partial differential equations or from the
solution of algebraic eguations. The latter are obtained by
modelling the convective and diffusive terms in the Reynolds
stresses equétions with an algebraic form, if the variation
cf the turbulence stresses are small across the flow. These
methods, called Reynolds stress models or algebraic stress
models have been reported by Launder et al. [25], Bradshaw
et al. [26] and Rodi ([55]. Reynolds stress models employ
transport equations for the individual stresses. They are
more elaborate than viscosity-based models. In some cases,
e.g., [25], the Reynols stress models have shown better pre-
dictions than the more widely used k-t model. However, due
to the complexity of these models and the fact that they are
computationally more expensive, the Reynolds stress models
are thought to be less versatile than the k-t model for most

pratical applications.

2-2-2 Turbulence k-t Model

The transport equations governing the turbulence properties,
k and ¢ , can be obtained from the Navier-Stokes equation.
To derive the Kkinetic energy equation,_-fhe Navier-Stokes
equation is first multiplied by the instantaneous velocity
U;j. The time average of all terms is then taken, and the

18



equation which governs the kinetic energy of the mean flow

is subtracted. The resulting equation becomes

k
Tx; PUik T g [oujlkent)- Vv
(1) (11)
i
PUSU == =~ U (———)
JaxJ axJ

(I111) (IV)

The term labeled (I) is the rate of change of kinetic energy
and is seen to be due to the turbulent transport term (II),
the rate of turbulent production term (III) and the rate of
dissipation term (IV). The <turbulent transport term con-
tains fluxes arising from velocity fluctuations and viscous
action. Analogous to the handling of the diffusion trans-
port, the flux due to the velocity fluctuation can be cast

into the following form:
OU;(k"’p') Fom e o (2-15)

where ok is the Prandtl number of the turbulent kinetic

enerygy. Making use of Eguation (2-15), the final form of

the kinetic energy eguation is:

U ; Ju

3 - & ot 3k_ Pl R -
== ou.k [( tu)e=—171- u1u”x +p(ax.) (2-16)




= _20o 9k

°F o PR T T Verfax T8 e (2-47)
Mt

where Hafgs is the effective viscosity = y + — (2-18)
%k

. U,
G is the rate of production = - pu;ué EYl (2-19)
3“.} 2
and £ is the dissipation = i%(;;—) (2-20)
J

Development of the equation for the dissipation of
energy 1is tedious. To obtain the equation, the momentum

equation is differentiated with respect to Xy . then it 1is

Iuy
ax.’
J

of these operations may be written as follows {[27]:

multiplied by 2v and finally time averaged. The result

; aul auj 3u; auj aul au! 2,2 azu,'i azu'i
sx PEYy T 2V 3xT 3N, 9% 2u3yT 3% axJ <k
X 1 1 J 1 J ] e ax .2 “‘2
' 2y. 'aul au!
-Zuu'au’ 22u, -2v3u13331
j . . 9X X .
Joaxy axjax axy 3x, j
3 apt 3Uj de
- .o T _
ax].["“iE 2w axy ax, “axi] (2-21)

To make this equation tractable, various assumptions must be

20



introduced. Generally, the first five terms on the right
hand side of the eguation are combined to represent the pro-
duction term and the term in the last bracket is treated as
the diffusion term. Acéording to Launder and Spalding {1],

the workable form of the dissipation equation is

']
Doy, = 2 eff ac

. i . .
ax1 ax1 oe 'c))(1

+ (€46 -nCye) (2-22)
The eddy wviscosity is then given by:
= ¢ p Ko (2-23)
€

Equations (2-17), (2-22) and (2-23) constitute the k-t
model, which together with the continuity and momentum equa-
tions (Equation (z-6) and Eguation (2-7)), form a closed set
of eqguations describing turbulent flows.

The k-¢ model contains five empirical constants. They
are determired either from experiments or from computer
optimization [217]. In grid turbulence, diffusion and pro-
duction of kinetic energy and dissipation energy are negli-
gible, so that C, iz the only constant appearing in Equa-
tions (2-17) and (2-22). Therefore, C, can be determined
from the measured rate of decay of kinetic energy behind a
screen grid. The value of C; was found to lie in the range

1.8 to 2.0. The constant Cy is determined from experiments

21



of shear layer flows. In such flows, the convective and
diffusive transport of the kinetic energy are negligible.
The production of kinetic energy is equal to the dissipation
and the turbulence is in a state of local equilibrium.
Equations (2-17) and (2-23) combine to give Cy = (ﬁ?/k,z.
Measurement in this flow [26] yielded uUv/k = 0.3, so that Cy

= 0.09. Cj3 is determined from the following:

CI = C2 - T———— (2-24)

This eqguation is derived from the dissipation egquation by
considering the flow in the wall region, where the logarith~
mic velocity profile prevails and where convection of dissi-
pation is negligible. The above relation fixes the wvalue of
the constant Cj when the other constants have been chosen.
The Prandtl numbers of the kinetic energy, Oy, and the dis-
sipation erergy, o, are assumed to be close to unity and
they are adjusted by computer optimization. The following
values are recommended by Launder and Spalding [1] based on

extensive examination of free turbulent flows:

Cu Cl CZ ck o

Although these constants are adequate for many flows, it has
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been found that streamline curvature effects, which strongly
influence turbulent transport in shear layers, are not
described by the k-: model with the above constants. A mod-
ification of the constants, therefore, has been introduced
to achieve the inclusion of curvature effects, e.g., by
Launder et al. [56] and by Leschziner and Rodi [57]. How-
ever, these correcticns are of an ad hoc nature, and future
research is‘required to provide a more rigorous framework
for the incorporation of a curvature correction into the

turkbulence model.

2-2-3 Wall Function

In general, the k-t model is valid for high Reynolds number
flow. In the region close to the wall, viscous effects dom-
inate and the turbulence model c¢an not be expected to apply.
There are two methods of treatment for the wall region in
numerical computation: the wall function method and a low
Reynolds number modelling method.

The wall function method assumes that, at a point P
leccated a distance above the wall and outside the viscous
sublayer (refer to Figure 1), the velocity vector is paral-
lel to the wall and described by the logarithmic law of the
wall. With this assumption, the wall boundary conditions,
such as for the shear stress, are connected to the mean flow
properties at the point P. The computation thus skips over
the region of the laminar sublayer where, because of steep
gradients in the dependent wvariables, a large number of grid
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points are required.

The low Reynolds number model uses the original turbu-
lence model as a basis and employs a damping effect and
other functions on the viscosity and the turbulence equa-
tions to account for the variation of flowfield quantities
near the wall. This method permits the calculation to
extend to the solid wall, so that velocities and other quan-
tities within the laminar sublayer can be described. A
recent review of the performance of the low Reynolds number
model was given by Patel et al. ([28]. They examined the
results of several boundary layer type flows and found none
of these models could be used with confidence in the region
near the wall.

In the present work, the flowfield in the main flow
regicn 1is of principle concern. To avoid excessive grid
points in the laminar sublayer, as mentioned above, the wall
function metnod was adopted. The first grid point in the
flow next to the wall is placed just outside the viscous
layer. At that point, the resulting velocity, VP’ parallel

to the wall, is given by
p 1 +
* = — Inty (2-25)

where u* and yE are the friction velocity and the dimen-

sionless wall distance defined, respectively, by:
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= ' 2-26
u ( s ) ( )
*
7]
y* = Yt (2-27)
p u

1y 1s the shear stress at the wall x and E are the von-Kar-
man constant. and the roughness parameter, respectively, with
the corresponding values of 0.4 and 9.7. Egquation (2-25) 1is
applied in the range of nondimensional wall distance, yE,
between 30 and 220, where the first grid point- P must be
located. This range lies between the viscous layer and the
turbulent inner laver. In this range, advection and diffu-
sion of GZG} are negligible and local equilibrium prevails.
Under this condition, the turbulence energy equation for a

two dimensional boundary layer situation reduces to

Production = Dissipation
u -
t,3u, <
or —_— () = 2-28
5 (3)’) € ( )

Equation (2-28), tcgether with Equation (2-26), and the
assumption that the shear stress at the point P is approxi-

mately equal toc the wall shear stress, leads to

k = 7%; (2-29)
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Additionally, substituting gi} computed from the 1log law

into Equation (2-28) will give the relation for e¢:

* 3
e = U (2-30)
<Yy
0.75 1.5
or e = — 20— (2-31)
Ky

Equations (2-29) and (2-31) give the values of k and & at

the point P without solving the transport equations.

2-3 Basic Equations For Steady, Incompressible,
Axisymmetric, Turbulent Swirling Flow

The transport eguations for the conservation of mass, momen-

tum, <*turbulence energy, and dissipation have been presented

above in general form. For the present study, the steady

state eguations for incompressible, axisymmetric, turbulent

swirling flow may be written:

Continuity
9 )
-~ + — = -
ax PYU T oyar PVT 0 (2-32)
xXx=-Momentum
d 3 ) U ) qu
<_ + 2 - 2 oY . L AR
ax PUu rar PVru ax Yeff 3x rar "Meff 3r
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3
°gx 4 2 AN _
ax  3x Yeff 3x © rar "Meff 3x (2-33)
r-Momentum
3 9 3 v ) v
_a_x puv + Y5 pvry -5-;- ueff X FaT r”eff -
(2~-34)
3p 3 au 3 3V pW2  2yuv
= - —— o m— gY 4+ CAS + pw*®
X ax Y eff ar rar "Yeff ar 2 75—
8 -Momentum
3 9 - aw _ 9 aw
ax PUW T rar VTV ax "eff 3x rar 'Yeff 3r
= . BVW _ W 3 . . (2-35)
r ¥Z 3r | Veff
Turbulence energy
¥ H
9 3 3 "eff 3k ) eff 5k
Ny jog-uvy - ———— —— - r _—
3x Puk * 7 evrk 3 o, ax _ Tar o or
(2-36)
= G - pE
Dissipation energy
2 9 3 Yeff 3¢ 3 Yeff ae
3X pUe rar pvre 3x Oe X ~ T r . __r
(2=-37)

=_{% (C]G - Czps)
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where G is the production term given by

6 uger (202N + (374 (L)' ] 4 (284 2y

ax r r X
(2-38)
e S (s (3

Examination of the above eqguations reveals that each
contains terﬁs for convection, diffusion, and source of the
dependent variables. Consquently, the complete set of equa-
tions can be written compactly in a single general form for

an arbitrary dependent variable ¢:
1
ovre - =Ty 22 -—r-%r¢r-§;: =S¢ (2-39)

where r¢ is the effective diffusion coefficient and S¢

denotes the source term.

2-4 Boundary Conditions

The governing equations by themselves do not yield a solu-
tion to a given problem. Additional boundary information is
required at the inlet, oﬁtlet, the axis of symmetry, and the
solid wall. Examination of the existing literature shows
that 1inlet boundary conditions are generally not well
defined. Previous investigations, [29] and [30]), have found
that predictions are very sensitive to distributions of
velocities and turbulence quantities at the inlet.
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Therefore, experimental measurements at the inlet boundary
should be used, if at all possible. Lacking this informa-
tion, the only resort is to make some reasonable estimation
regarding the values. In most cases, the velocity profile
at the inlet will be specified or the Reynolds number based
on inlet properties is known and the velocity assumed to be
uniform. The turbulence kinetic energy and its rate of dis-
sipation aré generally estimated from the assumption of
local equilibrium of turbulence or according to the follow-

ing expressions, see [31)] and [58]:

k = au? (2-40)
. = k1.5 (2-41)
AD

where D 1is the inlet diameter and a and ) are constants.
Although the checice of these constants is arbitrary, they
may, nevertheless, have scme effect on the solution. The
constants were taken, for the present application, to be
those of Lilly and Rhode [31]: a = 0.03 and X = 0.005.
Outlet boundary conditions have been found to be less
troublesome in practice. At the outlet plane, the dependent
variable or its flux is assumed not to change further in the
direction normal to the outlet plane. Either the first or
seéond derivative of a dependent variable in the normal
direction is set to zero. The exit plane is located far
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enough downstream where the flow is strongly outward-di-
rected and will not influence the upstream properties. The
boundary wvalues at the exit are obtained from an extrapola-.
tipn of values existing at the inner nodes. The velocity
components thus obtained must be adjusted to satisfy the
overall mass balance with respect to the inlet mass flow.

Along the axis of symmetry, the gradient in the radial
direction of all variables is set to zero, except for the
radial velocity component v which is given a definite value
of zero.

On the solid boundary, the no slip velocity boundary
condition is applied. The wall shear stress is calculated

from the log law or its alternative form

OKV/ECO'Z Svo
T = I — (2-42)
W 1nEyD

A zero pressure gradient normal to the wall is often invoked
and the pressure at the wall is approximated from extrapola-
tion. Immediately at the wall, the turbulence energy van-
ishes, but the dissipation is finite. 1In practice, the tur-
bulence energy and the dissipation at the point nearest to
the wall are not computed from the equations but rather are
determined from Equations (2-29) and (2-31) following the

wall function concept.
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CHAPTER 3
GENERATION OF GRID SYSTEM

Ir the development of a numerical procedure for solving the
gcverning eguations, the first step is to superimpose a grid
distribution‘over the flow domain. For irregularly shaped
flow domains, numerical methods of generating the grid have
been widely used over the past several years. The underly-
ing cecncept behind the method is to let the coordinates of
the grid points emerge from the solution of a set of partial
differential eguations in the physical plane. The grid
nodes thus generated will follow the shape of the flow con-
figuration and part of the new coordinate lines will coin-
cide with the boundary segments of the physical domain.
This tecnnique transforms an arbitrarily shaped physical
plane into a squaré mesh in the computational domain. This
not only eliminates the need for any interpolation at the
irregular boundaries, but more importantly, allows the grid
to be clustered in regions of sharp velocity gradients;
thus, better resolution of the flow is provided. A typical
coordinate transformation is sheown in Figure 2.

Grid generation techniques have gained importance in
the numerical solution of partial differential equations.
Recent developments provide a variety of methods to generate

and control the grid for better quality of solutions. A
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comprehensive review of this subject can be found in
references (32], [33] and [34].

In the present study, the method developed by Thomas -
and Middlecoff [35] was adopted. They solved a set of
Poisson equations to generate the grid system. A source
function was employved in each eguation for controlling grid
spacings. The proposed source functions contain adjustable
parameters which are determined from the boundary values.
As a result, the grid distribution was entirely controlled
by an a prior selection of boundary grid points.

The equations for grid generation are given by:

Exx ¥ &yy = R(g.n)

0(E,n) (3-1)

xx * Nyy

To obtain the coordinates of the transformed system, the
dependent variables in the above equations must be inverted

with the independent variables. This inversion yields

- + S 2
axX,p 28xEn X J (Rx£+ an)
(3-2)
- + 2 - 2 +
OFp g - 2BY .t vy J2(Ry + Qv )
where a = x2 + y2
n n
B = xExn+ yEyn
(3-3)
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The source -functions R and Q are used to control the
interior grid spacing. Following Thomas and Middlecoff,

these are assumed to have the form:

R(E,n) X(Es“)[.’:)z( + f‘.i ]
Q{e,n) = ¢(e,n)[nz + n§ ] (3-4)

where x and ¢ are free parameters which are evaluated by the

following eguations:

X X +t Yy .Yy
Weany = - eele T Ved¥e
g ‘g
(3-5)
X X + y y
UJ(E,T\) = - ﬂflxg F U

2
yrl

On the boundaries, the (£,n) grid points and their locations
are written in terms of the physical coordinates (x,y).
Therefore, the derivatives of X and y with respect to § can
be calculated on the constant n boundary lines. Similarly,
the derivatives of x and y with respect to n can be calcu-
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lated on the constant £ boundary lines. The parameters X
and ¢ are then evaluated on the n and £ boundary lines,
respectively, according to Egquation (3-5). Once the parame-
ter x at each mesh point on the n boundary lines and the
parameter ¢y on the f boundary lines are obtained, their val-
ues at interior points can be approximated by using linear
interpolation.

Upon introducing R and Q into Equation (3-2), the final

form of the governing eguations are

+ -
a(xEg XXE) 2 8 x

H
[us)

+ +
£n Y(xnn wxn)

(3-6)

L]
o

+ - + +
°(y£E X‘YE) 28y Y()’nn wyn)

En
The pair of expressions in Equation (3-6) are solved simul-
taneously on a uniform, rectangular grid, having grid spac-
ings Af and An equal to one. Solution of these egquations
must account for the boundary conditions that specify the
set of (x,y) values corresponding to the (f,n) points on the
boundaries in the computational plane.

Figure 3 shows the relation between the grid that is
generated for a bifurcated diffuser in the physical plane
and that in the computational plane. It can be seen that
the curved boundaries of the bifurcated diffuser are mapped
into straight lines and the irregular grid in the physical
plane is transformed into a square mesh in the computational

plane.

34



CHAPTER 4
TRANSFORMATION OF BASIC EQUATIONS

Once the curvilinear coordinates are generated for a given
flow domain, the governing eguations and boundary conditions
must be transformed in terms of these coordinates. There
are two possible checices of performing the transformation:
ocne retains the physical components of velocity, while the

other uses ccntravarient velocity components of the new

coordinate system. The former approach was used by Rhie and
Chow [36] and by Shyy et al. [37]. The latter method was
used by Demirdzic et al. {9]. Vinokur [38] has shown that

for an axisymmetric flow, the governing equations based on

contravariant veloclity components, when discretized, will be

cast inte non-conservative form. Hindman [39] examined the

w
o)

results of an unsteady Euler equation in several conserva-
tive and non-conserwvative law forms. Based on his solu-
tions, the conservative form was found preferable over the
non~conservative form, especially when a shock wave was
present. Hindman's result, though, is not definitely appli-
cable to the current class of turbulent flow problems. How-
ever, 1t 1is expected that the conservative law form may
eventually be more acceptable for numerical purposes.
According to general transformation rules, the partial

derivatives of a function, say ¢, in cylindrical coordinates
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(x,r) can be transfromed to curvilinear coordinates (%,n) by

means of following relations:

3¢ - "noae _ e oag
Ix J 3¢ J 8n

3¢ . X£ 36 _ Xn 3¢ (4-1)
ar J 9n J 3¢

Substituting Equation (4-1) into Equation (2-39), the flow-

field in the new coordinate system will be governed by

13 13 rTe  ae o380
T3¢ DF€¢ JTE[T(Q_E -Bﬁ)]
18 3 Terae L3647 . (4=2)
rJd an ern¢ rd 3n [ J (Yan‘e’a—g)] ’S¢(E3n)
where F_ = ur - vx
n n
Fo = VXg = ure (4-3)

The geometric factors «, B, ¥ and J have been defined in the
previous chapter and are all known as part of the grid gen-
eration procedure.

The physical significancs of several of the terms given
above may be advanced: FE//; and Fh//? are the covariant
velocity components normal to lines of constant £ and =,
respectively; v o and V¥ represent the distances between two
grid points in the n and § directions; B is the angle
between { and n lines in the physical plane thus, B is a

measurement of orthogonality. It vanishes when a { line and
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an n line are orthogonal; and, finally, J denotes the area
in the (£,n) plane.

Equation (4-~2) has been used by Shyy [7] to solve for-
the flow in a dump diffuser. Further, a two dimensional
form of this equaticn was used by Rhie and Chow [36] to
determine flow past an isoclated airfoil. Shyy et al. [37]
also used it to determine the flow in a gas turbine combu-
stor.

Along with the governing equations, the boundary condi-
tions must also be transformed into curvilinear coordinates.
If Dirichlet boundary conditions‘are applied, the dependent

variables remain the same in both coordinates, so that

¢ (£,n) =0 (x,y) (4-4)

If Neumann boundary conditions are applied, the derivatives

3¢ 3¢ . . .
334£ or =4 n must be written in terms of (§,n) coordi

nates. The unit vector normal to a § coordinate is given by

- ->
r dr x k (4-5)

where T = position vector of a point on the coordinate line;

s = arc length along the line; and
X = unit normal perpendicular to the (§,n) plane.
. d¥ _dx », dy = > +ydn
—  — < = + —— -
Now, since ge==ggi* goJ (xn1 ynJ)ds (4-6)
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dr) . /%2 +y2 3n - /73n -
and || x2+y2 35 /EBS (4-7).

substituting these into Equation (4-5) produces

I

> 1 (

fs 3 (LT )

Q

n

The derivative of a function in the direction normal to a

constant £ line is obtained through the following scalar

product:
3%, =F. = 1 3¢ _ o238 -
anlé: Mg 7¢é 375 (e Y3 8 an) (4-9)

In a similar manner, the unit vector and the derivative of a

function normal to an n coordinate line are obtained:

= .' - 3.! E_X_ 4_
nn ;Y ( 351 ¥ EJ ) ( 10)
and % = 1 w,ﬁi - X 4~
anln J;Y ( an B & ) ( 11)

The unit vectors HE and Hn are illustrated as they appear in

the physical plane in Figure 4.
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CHAPTER 5
NUMERICAL TECHNIQUE AND SOLUTION PROCEDURE

Two main features ¢f the solution method used herein are
employment of the finite volume approach . -and the SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations) algor-
ithm. The latter was proposed by Patankar et al. [40]. 1In
this chapter the grid arrangement, the finite volume method,
numerical differencing schemes and the solution algorithm

are described.

5-1 Grid Arrangement
It 1s well known that when using primitive variable solvers,

if the pressure and velocitiess are stored at the same nodal

©

location, a pressare oszscillation will occur which, in turn,

n

gives rise to convercence difficulties. The accepted method
for resoiving this problem is to use a staggered grid system
[41] in which some flow wvarialbls, e.g., velocities, are
defined on one set of nodes, and the other variables, e.g.,
pressure, are defined on a mesh that is shifted by one half
a nodal-space with respect to the other mesh. This arrange-
ment enakbles the velccity field to detect a pressure differ-
ence over a single grid space. Hence, any pressure change
between two nodal points will immediately be reflected by
velocities in the momentum equations.
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Figure 5 shows the dependent variables defined in a
general curvilinear coordinate system. Grid nodes are
numerically generated at the intersection of two coordinate
lines. The gquadrilateral bounded by four adjacent grid
lines forms a control volume or cell. The velocity compo-
nents u and v dre placed at the midpoint of the cell faces,
while the other flow properties are placed at the center of

the cell.

5-2 The Finite Volume Method

5-2-1 A General Transport Equation

The finite difference counterpart of the governing equation,
Equation (4-2), 1is derived by using the finite wvolume
method. This method assumes that each variable is enclosed
in 1ts own control volume. For a grid peint P surrounded by
its neighbors E, W, N, and S, see Figure 2, the governing

equation is integrated over the control volume, Jd&dnrdS:

e L2 opr - L8 (30 5327y ydednrde

“[s,(t,n)ddednrde (5-1)

By taking 4f{ = an = 1, and cancelling d6, the resulting
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equation yields

T,r T,r
e _ ¢ 3¢,€ n _ ¢ _ 39N
°ng¢Iw J @ aglw + °an¢|s J Y anls
- _Ter 2¢e _ Te" 34yn .
Sedr T 85l T B5els (5-2)

To discretize Equation (5-2), a central differencing form is
used for the diffusion terms and a linear interpolation
scheme 1is employed to approximate the convections terms.
For example, at the west face of a control volume the con-

vection and diffusion terms are expressed, respectively, as:

£lw -7 = 7 (¢p ‘¢w) (5-3)

w s - Dwlep - ey (5-4)

Upon introducing expressions of the type immediately shown
above into Eguation (5-2), a finite difference relation
between the variable at point P and its neighboring values

is obtained, viz.,

- ¢ -
AP¢P = AE¢E + Aw¢w + AN¢N + AS¢S + S (5-5)

where
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= Ce =y
Ag =0 -7 Ay Dwt7
_ Cn _ Cs
AN = Dp - 5 Ag = Dg + 5-6)
Ap = Ap *+ Ay + Ay + Ag
4 S¢ -5, 3 ) Ter iile ) Tgar iﬂln 5.7
an o Ir - —3~ Ban W L.-l Bag s ( )

Equations of this kind are formulated for each of the
flow variables u, v, w, %k, and =¢. The equation for the

pressure, the remaining unknown variable, is established in

the following section.

5-2-2 Pressure Equation
The pressure equation is obtained by combining the continu-
ity equation and the momentum equations. In the transformed

domain, the continuity equation takes the following form:

™n 3

J 3¢

x
Y

r
3 X
pu - jf-éa-pu + Jr 30 pvr - I% g% pvr = 0 (5-8)

Integrating this equation over a control volume which

encloses a center node labled P, gives

N9 (5-9)

e
+ ernls

orFslw
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If correct values of the velocities u and v, and hence FE
and F,, are inserted into Equation (5-9), the eguation rep-
resents conservation of mass. That is, the left hand side
cf Equation (5-¢) will be exactly zero. However, velocities
obtained from the momentum equations for an assumed pressure
distribution will generally not satisfy the continuity equa-
tion exactly. The assumed pressuré distribution thus must
be corrected and the velocities altered as well.

The assumed pressure field is labeled p* and the corre-

sponding velocity fields are labeled u* and v*. The correct

pressure and velocities will be

p=p*+ p'
u = u* + y' (5-10)
voE vk o+ v

where p' is the pressure correction and u' and v' are veloc-
ity corrections. To obtain the equations that govern u' and
v', Egquation (5-5) for the velocity components is rewritten
by removing the pressure gradient from the source term. This

gives an alternative form as:

u, . u T 3p 3P

Ap“p 5§E s Aiui + S r'rnaE + rrEan
(5-11)

YV, = v v ap ap

B I T T
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The starred velocities are obtained from the above equations

by replacing u*, v*, and p* with corresponding variables,

i.e.,
Adul = 3 AYu, + sY - pr 2R, . 207
PP i=E,W.N,S i n 93§ £ 9
(5-12)
v, * _ v v ap* ap*
A = VI - + £E
pVp iEE,w,N,S A1v1 S TXe rx, 3E

By subtracting Egquation (5-11) from Equation (5-12), the
relations for the velocity corrections are found in terms of

the pressure correction:

u v u v ap' ap’

Ap“p iEE WONLS Aiui ren 5 E torre =
(5-13)

v, Voo ap ' ap'

ApVe I A B EE S -

These correction equations are merely intermediate devices
that led to the final results. Thus, the omission of some
of the terms in these equations will have little effect on
the correctness of the final solutions [40]. Accordingly,
the pair of expressions in Equation (5-13) are simplified by

u v
dropping the terms ZAiui and zAjvi, i.e.,

2

‘= pY (- r ap’ r 2

Up n £ )

[- %]

n
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‘=V_ .E’_Ri.-f. ep‘
Vp D" ( Xe oo X 5
where DY = —%r oY = _%F
AP AP

(5-14)

The correct velccities are then obtained by the following

formulae:

u_ o= u* o+ DY (- r 24 2P

p P n 3f £ 3In
. LA ap' L, apl
Vp = vp + DT (- x g4 x o)

(5-15)

The partial differential equation that describes the pres-

sure correction p' is derived by introducing Equation (5-15)

intc the continuity eqguation, Egquation (5-8).

After inte-

gration over a control volume and use of the definition for

ot

Fg and F,, it is found tha

] ] 1 1
- - V3P y1® 4 (oopyt 2P 13Dy M
(-ora — +org' - ), t (-ery 5e pra' == )¢
*e
= -QPFEIW - prfF '
where ' = DYr2 4+ pVx2
n n
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8' = pYr r + DVx x (5-17)
En & n

' u v
= D"'r2 + D"x2
Y 13 n

and FE and Fp, are defined in Eguation (4-3), only here in
terms of starred velocities. It is noted that terms con-
taining B are usually small and it was subsequently found
that solutions obtained by omitting these terms were not
greatly affected by the omissicn. Therefore, these terms
were dropped and a central difference was used for the
derivatives of p'. The final form of Equaton (5-16), simi-

lar to Equation (5-5), is then

ApPp = ifs,w,n,s A?p; +m (5-18)
where Ag = pra' e AS = pra' W
Aﬁ = ory' |, Ag = ory'| (5-19)
Ap < AD+ AG 4 AR A
and  m = -prfy |8 -orFr|] (5-20)

The source term mp is essentially the continuity equation,
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Equation (5-9) , evaluated in terms of starred velocities u%*
and v*. It represents the mass imbalance of a control vol-
ume.

Once the finite difference eguations for the dependent
variables are established, the momentum equations, pressure
ecguaticn, and turbuLence model! eguation are coupled and
ready to scolve. As the solutions approach a converged
value, the mass impbalance, mp, becomes smaller and smaller,
tending toward zero. At that stage, then, p' = 0 at each
grid point, which is the sclution of Equation (5-18). Thus,
pressure and velocities need not be corrected further and

the starred pressure and velocities are the final results.

5-3 Numerical Differencing Schemes

In deriving Equation (5-5), a simple linear interpolation
has been used for the convection terms at the cell bound-
aries. Thnis form is actually a central difference scheme,
which has been fcund to cause numerical instability in the
solution process unless a very small Peclet number is used.
One remedy for this problem is to make use of upwind differ-
encing. By this method, the convective quantities at the
cell boundaries are set equal to the values upstream of the
cell face instead of the average of the wvalues on both
sides. Upwind différencing has been widely used because of
its superior stability properties. However, this method
introduces a so-called artificial or false diffusion error
which emanates from two sources: a relatively large trunca-
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tion error and the non-alignment of the coordinates with the
flow direction. This diffusion error can severely reduce
the accuracy of the sclution, particularly when the flow is.
dominated by convection.

Two approaches have been used to suppress the artifi-
cial diffusion error: higher order finite differencing
schemes and accounting for the flow direction. The former
practice has lead to the development, for example, of the
cuadratic upwind scheme [4], and the latter has resulted in
the development of the skew upwind scheme [3]. Previous
investigations have shown that these schemes are capable of
producing more accurate numerical predictions than those of
the conventional upwind scheme [42], [43]. The improvement
is significant for laminar flows, but for high Reynolds num-
ber turbulent flows, the effective viscosity is much larger
than the laminar value and the improvement is not as great.
It must be mentioned that higher order differencing schemes
can generate solutions having undesirable under- or over-

shoot values which are, in some cases, beyond physically

realistic results. In addition, higher order schemes have
been found to possess greater instability problems. Recent
analyses, (5], [12] and [44], have also indicated that the

accuracy of the numerical results obtained from higher order
- schemes were problem dependent and none of these schemes
would give completely satisfactory solutions for all test
cases. Because of these difficulties, it was decided that

higher order differencing would not be investigated herein.
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In this study, <three basic numerical schemes: the
hybrid, the quadratic upwind, and the skew upwind, will be
applied. The hybrid scheme is a combination of conventional .
upwind differencing and central differencing. The convective
terms are approximated with central differences if the grid
Peclet number lies between -2 and 2; otherwise, an upwind
scheme is employed. When the upwind scheme was used, physi-
cal diffusion was neglected. For example, on the west face
of a control volume, the convection and diffusion terms in a

hybrid scheme are expressed as:

r

(orFp), - (4 add)

- (orF ) (B (e (i) Ip s 2

= (°"Fg)w¢w Po > 2 (5-21)
= (erE)w¢p Po < -2

In the quadratic upwind scheme, a cell edge value is
determined by a gquadratic interpolation using two adjacent
nodal values together with the wvalue at the next upstream
node. As illustrated in Figure 6a, this scheme requires
nine adjacent points to formulate an expression for all
faces of a control volume. For a west face property in the

quadratic upwind scheme, the following are used:
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Skew upwind differencing is essentially the same as the
hybrid scheme. except that when (Fel 2 2, the upwind scheme
is performec on the true streamlines so both the flow direc-

tion and the angle between the flow and the grid lines are

ol

taken into cons.deration. Again, using the west face of a
contrecl volume as an i1llustration, as in Figure 6b, the gen-

eral dependent variakle for a skew upwind system is given by

(5-23)

o
[l

w o %2 P <=2

The ccncept bkenind this scheme is simple, but the formula-
tion %o interpolate ¢, or ¢, is algebraically very cumber-
some since four distinct regions for each control face are
involved. Implementation of the above three computational
methods are detailed in the-Appendix.

It should be mentionmed that the diffusion terms are
always represented by central differences regardless of the
value of the Feclet number. Also, application of the quad-

ratic upwind scheme and the skew upwind scheme is only used
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on the momentum egquations. For the turbulence model
equation, or the eguation for any of the scalar properties,

the hybrid scheme was used throughout.

5-4 The Solution Algorithm
The finite difference equations (Eguation (5-5) for the
velocities and turbulence guantities, and Equation (5-18)
for the pressure correction) are solved iteratively follow-
ing the SIMFLE algorithm [40]. This algorithm is a series
of steps ¢f estimations and subsequent corrections of the
pressure and velocities. Twe iteration seguences are
employed: an inner sequenca and an outer sequence. The
outer lteraticn contains the fcllowing cyclic operations:

1. The intermediate velocities, u* and v*, are obtained by
sclving the corresponding momentum equations using the
previous pressure field, p* (at the first iteration p* is
assumed zero);

2. The pressure corracticn sqguatiosn for p' is solved. This
is followed by the subseguent correction of the pressure
field p and the velocity fields u and v through Equations
(5-10) and (5-14), respectively;

3. The equations for the remaining variables (k, &, w) are
solved in turn and then the viscosity is updated by means
of Equation (2-23);

4. The whole process is repeated until a converged solution
for each variable is achieved.

The inner iteration seguence is employed to solve the

51



equation for each variable. Execution of the sequence is
either by a line-by-line iteration using a tridiagonal
matrix algorithm (TDMA) or by point iteration using the.
Guass-Seidel method. When using the line-by-line TDMA
method, complete convegence of the solution is not necessary
and usually 2 to 7 sweeps of the field suffiée for the iter-
ation. Alternately, if the Gauss-Seidel method is used, a
change of less than 20% of the results between two consecu-
tive iterations is adequate to advance the calculation to

next step in the seguence.

5-5 Convergence, Stability, And Accuracy
Solution of the finite difference eguations for the turbu-
lent flow problems considered in this study requires
underrelaxation at each iteration in order to suppress div-
ergence. The underrelaxation factor is arbitrarily assigned
and ranges from 0.1 to 0.5 depending on flow types, grid
systems, and numerical schemes. The convergence criteria
may be established based on the residual of the finite dif-
ference equation or on an evaluation of the mass imbalance
at each axial station, i.e., (ms - min) x 100% /min (ms is
the mass flow rate through each axial plaﬁe and min is the
mass flow rate at the inlet). The latter criteria is
applied in the current work. By this approach it is claimed
that converged results are obtained if the mass imbalance is
less than 0.01% in comparison with the mass inflow.

There are several potential sources of error in the
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numerical solution of a differential equation. One source
is associated with the coordinate transformation while
another is due to the finite difference representation of
the equation. In regards to the coordinate system, numeri-
cal error is a function of the grid spacing, its rate of
change across the mesh and the departure of grid lines from
orthogonality. A previous analysis [45] has shown that the
use of Equation (4-1) in a coordinate transformation and
subcequent finite differencing would reduce the solution of

the partial differential eqguation to that of first order

accuracy. Also, nonorthogonality introduces a factor of
(sinafq‘ into the truncation error. Obviously, the smaller
the angle between the grid lines, i.e., the larger the

nonorthogonality, the larger the truncation error.

Numerical error related to the finite difference repre-
sentation of the eguation is nermally viewed from the stand-
point of the highest truncated term. However, in convective
dominated transport problems, the false diffusion error
could be more severe than the truncation error and should be
taken into account in the error analysis. If this were not
done, the skew upwind scheme would exhibit the same numeri-
cal accuracy as the conventicnal upwind scheme. Unfortu-
rately, there does not appear to be a method to exactly
evaluate the magnitude of the error that stems from numeri-
cal diffusion.

In addition to the errors examined here, there remains

an important factor that could affect the solution accuracy:
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the turbulence model used. It is well known that the k-¢
model has serious defects, but is used only because it out-
performs other turbulence models when all types of problems
are ccnsidered. Taking all these errors into account, it is
easy to understand that the numerical solution of turbulent
flows 1is strongly dependent upon the grid, differencing

methods, and the turbience model used.
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CHAPTER 6

A ZONAL GRID TECHNIQUE

In the use of a zonal grid approach, the mesh for various

regicons of the field is generated separately. Therefore,

[

the g¢grid lines extending across two adjoining regions may

not align with each other, and the transformation metrics

acrcss the zonal interface may not be continuocus. Computa-

o]

tion using a zcned grid method is based on the idea that
each region of the field may be treated independently as a
boundary valus problemn. The required boundary conditions

are cobtained either from physical arguments or from informa-

tien supplied from adjacent regions using proper zonal
boundary schemes. Acrozs zcne interfaces, two considera-

tions must be opserved: continuity of the dependent vari-
ables and conservation ¢f fluxes. In the present work, a
conservation form 1is <Zeveloped that uses an interpolation
method tc transfer data from a coarse grid region to a fine
grid region and an integration method for the reverse pro-
cess.

Consider the pair of discoentinuous grids shown in Fig-
ure 7. The line AB represents the zonal boundary that sepa-
rates the fine grid (zone 1; and the coarse grid (zone 2).
Let the coordinates be Ef and nf for zone 1 and Ec and ¢

for zone 2. The pair of indices i, j are used for £f and
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nf, respectively, in zone 1 while the pair k, 1 are used for
£ and 1%, respectively, in zone 2. Since line AR is the
last line of zone 1, it corresponds to imax. Also, for zone.
2, the line AB corresponds to the index k=2. Suppose the
solution is to be advanced on the fine grid in the direc-
tion from i=1 to i=imax. The calculation of the dependent
variables at the position i=imax then requires values at the
downstream p;ints i=imax+l. To obtain the values at these
zonal bcundary pecints from zcne 2, an overlapped region is
generated by extending the constant nf lines of zone 1 into
zone 2 to intersect the line CD (k=3). This overlapping
forms extra control volumes at the outlet of zone l, as
shown in Figure 8. The intersections have indices
(imax+1,3j) when referenced to zone 1. These points also
correspond to indices (3,1) when referenced to zcne 2. Val-
ues of the dependent variables enclosed in these outer con-
trol volumes located either at the cell face or at its cen-
ter are obtained by interpolation of values from the coarse
grid. For example, a variable located at the cell face,
marked x, of a control volume PRST in Figure 8, is found by
interpolation of wvalues from its coarse grid neighboring
points, marked o. The values at the X locations are then
adjusted in order to satisfy global conservation as calcu-
lated from the coarse grid at the same cross section. The

global conservation property is satisfied by requiring that

C [8

f, f _ c, C
jg dn' = J’g dn (6~1)
D D
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where gf and g€ are the fluxes through the zonal boundary CD
for zone 1 and zone 2, respectively, and dnf and dn® are the
corresponding elements of area normal to the flow direction.
In a similar manner, £flow prcperties located at the cell
center can alsc ke updated. The accuracy of the results
depends upon‘the order of the interpolation scheme. A third
order Lagrange peclvynomial was used to interpolate the values
of u, v, and p. However, cue to the large variation in the
radial direction, and to prevent unrealistic negative values
from appearing, a linear scheme was used for turbulence
quantities.

To update the zonal boundary points of the coarse grid,
the overlapped region 13 constructed by extending the con-
stant n¢ lines of 2z2one Z intc zone 1. Consguently, these
lines will intercept the line EF, as shown in Figure 9.
Line EF corresponds to i=imax-1 of zone 1 or to k=1 of zone
2. It can be seen that this extension forms control volumes
outside zone 2. The dependent variables enclosed in these
exterior control volumes are established by an integration
method which preserves the conservation properties of flow
across the cell boundaries. For a control volume in the
coarse grid having the boundary PQ as shown in Figure 9a,
the flux across <this area must equal that crossing the cor-

responding boundaries of fine grid, or
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(6-2)

If a piecewise ccnstant variation of g between two grid
points 1is assumed, as in Figure 9b, where the horizontal
direction represents the numerical values of the flux and
the vertical direction represents the grid points, the above

eguation can be rewritten in discretized form as:

f f

-Av'N- : -
o 9385 Ny (6-3)

where Nj is the fraction of flux of each control volume in
zone 1 that enters the corresponding control volume of zone
2. It is noted that when An® equals anf, g€ will be equal
to gf, and the flow properties will vary continuously across
the boundary.

The zonal boundary procedure was applied at each itera-
tion. When <the computaticn was advanced from one zone to

ancther, the 2zonal boundary points were first updated and

then the interior points were computed.
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CHAPTER 7
RESULTS AND DISCUSSION

To verify the developed numerical methods, predicted results
are compared with existing experimental values for selected
flow configurations of combustors and diffusers. These
include a sudden expansion combustor, a 45° expansion combu-
stor, a small angle conical diffuser and a bifurcated dif-
fuser. Mest of the calculations were performed on a 40x21
grid, or more than 800 grid points. The grid chosen repre-
sents a compromise between accuracy and available computer
Time. Three finite difference methods: hybrid, quadratic
upwind, and skew upwind, were applied to test the influence
of numerical diffusion. However, in many cases the more
advanced methods failed to produce a converged solution due
to stability problems. The first section in what follows
will present results computed using a single grid system,
while the second section will present results from zonal

grid calculations.

7-1 Results Using a Single Grid System

7-1-1 Flow in Combustor Geometries
Flow in a confined sudden expansion duct has a wide range of

engineering applications. Investigations of this flow have
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frequently appeared in the literature and have been used to
test the performance of computational techniques.
To simulate this flow, the boundary conditions were

taken from the experimental conditions used by Chaturvedi

{46]1. At the inlet, the wvelocity profile is assumed flat
and the Reynolds number 1is 2.5x10°. The duct expansion
ratic is 2.0, i.e., outlet diameter = 2 X inlet diameter.

The inlet coﬁditions for turkulence kinetic energy and dis-
sipation energy were nct provided and were therefore esti-
mated according tc Zgquatisns (2-39) and (2-40). The grid
was arranged as shown in Figure 10 for a 40x21 mesh system;
grid points were clustered in the inlet area and near the

solid wall for better resclution. Predictions of wvelocity,

W)

turbkulence energy, and precssure were compared with existing
experimental data.

Figqure 11 presents nredicted and measured axial veloc-

1}

ity profiles at three downstream positions, x/D = 1, 3 and
8, where D is the cdiameter ¢f the inlet section. It can be
seen *that the rasults cf the hvbrid scheme and the quadratic
scheme are almost the same. The predictions agree very well
with the experimental data for most of the flow. The poor-
est agreement occurs at X/0D=2.0, where the largest error is

about 10%. The velocity decay along the axisymmetric axis

N

is shown 1in Figure 1z alcng with the experimental data of
Chaturvedi [46] and Stevenson et al [49]. The comparison
is. seen to be reasonanly gocd for the three differencing

methods used. The turbulence energy is compared in Figure
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13. Since u'u' was measured in the experiments, in order to
make the comparison 1t was assumed that u' = V2k/3.
Although all c¢f the predicted distributions have the same
shape as thcse found experimentally, the magnitudes of the
energy are not accurately predicted. The variation of tur-
bulence intensity at the center line is shown in Figure 14.
The calculated values are, for the most part, well below the

measured values. The reason for this discrepancy is the

th

ceficiency of <the turbulence model, which does not account
for the extra strain terms in the calculation of the Rey-

nold

in

strezses and the dissipation rate, [10] [58]. Figure

14 a

0%

s0 1in

-

icates that low turbulence intensity is appropri-
ate for represeniting the inlet condition for the kinetic
energy equatiocn. Many analyses, e.q. [28] and [30], have
reported that the inlet values of k and ¢ have a significant
influvence on the numerical accuracy of the solution. Albeit

current tests did not reveal that kind of influence, differ-

ent inlet c¢onditions o©f k and ¢ were found to change the

Tvpical plets of the flow streamlines and the velocity
flowfield are depicted in Figures 15 and 16, respectively.
The recirculation 2zcne 1is clearly identifiable and the
strength of the recirculation is reflected by the size of
the velocity vectors. The reattachment lengths, normalized
with the inlet diameter, are listed in Table 1 for the vari-
ous finite difference methods. Generally, the lengths are

underpredicted by 10 to 15%, as reported by other investiga-
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tions.

To evaluate the influence of numerical diffusion, the
quadratic upwind and the skew upwind differencing methods
have been incorporated into the solution algorithm. The
results from these advanced schemes, however, did not show
improvement over results obtained with the conventional
hybrid scheme. This conclusion agrees with that observed by
Hackman et ai. (47] and by Syed and Chiappetta [6]. Both of
these studies were concerned with flow over a backward fac-
ing step for becth laminar and turbulent conditions. Their
precictions of the reattachment length, when compared with
measured values, indicated that an improvement by using
advanced differencing schemes was significant for 1laminar
flows, but only a small gain was realized for turbulent
flows. This is probably due to the rather large effective
viscosity that exists in turbulent flow which in turn forces
the source term in the governing equation to dominate in the
calculation process.

The numerical methods were applied to a 45° expansion
combustor. Lilley and Rhode [31] analyzed this flow using a
staircase of cells to represent the inclined wall. This
permitted the computations to remain in a Cartesian coordi-
nate system. The current work uses a coordinate transforma-
tion and grid generation technique which provide more flexi-
bility in distributing the grid. The computations were
performed in curvilinear coordinates with two different

types of grid systems. The grids were generated as shown in
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Figure 17 for grid I and in Figure 18 for grid II. The
difference between these two mesh systems is the treatment
of the inclined wall, which is part of the radial coordinate
in grid I and is part of the axial coordinate 1in grid 1II.
The grid spacings are contracted in the radial direction and
expanded in the axial direction with factors of approxi-
mately 0.9 and 1.06, respectively.

The preéicted velocity distributions at different down-
stream locations are shown in Figure 19 for grid I and in
Figure 20 for grid II. The inlet Reynolds number is the
csame as for the sudden expansion case, Re = 2.5x10°. Also
shown on these figures are the experimental results of Cha-
turvedi [4&]. When computed on the grid II mesh, the skew
upwind scheme did not converge very well, even for very
small values of the relaxation factor; thus these results
are ﬁot shown in Figure 20. From Figures 19 and 20, it can
been seen that on both grid systems the advanced schemes
prcduced comparzble accuracy to that of the solution found
by using hybrid differencing. The centerline velocities are
presented in Figures 21 and 22. The predictions on grid 1II
are closer to the experimental data, but the error is rela-
tively large at x/D = 6.0. The kinetic energy distributions
are shown in Figures 23 and 24. In the recirculation
region, the predictions are not accurate, but at downstream
locations they improve significantly. The reason for this
behavior is thought to be connected to the turbulence model,

for it is known that the k-z model does not produce accurate



results in separated flow regions. The spacial distribution
of turbulence intensity is shown in Figure 25 for grid I.
It should be noted that high turbulence intensity is gener-
ated along the shear layer and on the outskirts of the
recirculation zone. A peak value is located approximately
three diameters downstream from the flow inlet. Beyond the
recirculation zone, the turbulence intensity begins to decay
and a fully‘developed flew is gradually formed. Comparing
the results on different grid systems, the calculation on
grid II appears tc produce better solutions. This 1is
thought to be due %o the mesh being more orthogonal in grid
II, particulary in the inlet area.

Figure 26 pre;ents the flow streamlines in a 45° expan-
sion combustor. The reattachment length 1is determined by
measuring the horizonal distance from the flow inlet to the
rear reattachment point. The computed reattachment lengths
on different grid systems using various differencing methods
are shownh in Table 2. Aliso listed are the results from a
20x%20 grid and a 46x29 grid, alcng with the experimentally
determined reattachment length, (4.5 times of the inlet
diameter) as reported by Chaturvedi [46]. The computed rear
stagnation points on a 20x20 coarse grid are substantially
underestimated for all three differencing methods. The pre-
dictions tend to improve as the number of grid points
increases except for the case when using the skew upwind
scheme. For the hybrid and the gquadratic upwind schemes,

nevertheless, there is about a 10% error in the predicted
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values when compared with the experimental result. The
velocity profiles at various axial locations obtained from
twe different levels ¢f grids, & 20x20 and a 40x21, are com-
pared in Figure 27. The results computed on a 46x29 grid
are very close to these computed on a 40x21 grid, and are
not shown here. Ag can be seen, in the portion of the duct
containing the recirculation region (0.0 < x/D £ 4.5), the
velccity com#uted from a 20x20 grid is underpredicted in the

center porticn of the duct. This underprediction indicates

[N

that the spreading rate of the flow in the radial directicn
is toc rapid. Coincidentally, the size of the recirculation
zone and the reattachment length are reduced. Comparing the
compuations from the various grids reveals that the results
are grid dependent foxr the Z0x2C ccarse mesh and approach
staticnary wvalues in a 40x21 grid.

Additiconal information concering the number of itera-
tions required toc achieve a solution and the computational
times are listed 1in Table 3. The skew upwind methcd
requires the mest 1teratiodons and computer time because of
the rather lengthy calculation procedure required to deter-
mine the c¢oefficients. In addition, it exhibits less sta-
bility than the other two schemes and needs smaller relax-
ation factors which causes the number of iterations to

increase.

7-1~2 Flow In Diffusers
Diffusers have been widely used in combustors for converting
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velocity head into pressure, and thereby stablizing the
flame. Two types of diffusers were investigated: a conical
diffuser and a bifurcated annular diffuser. Computer runs
involving the conical diffuser were based on the data
reported by Senoco et al. {48] for a conical diffuser with a
12 degree total expansicn angle and an outlet to inlet area
ratio of 4.0. The inlet Reynolds number was 3.0x10°. All
computations'were performed on the 40x20 grid shown in Fig-
ure 28. Inlet conditions c¢f axial velocity, u, and circum-
ferential velocity, w, were taken from measured values. The
radial velocity, v, was assumed to be zero. The turbulence
properties were estimated from Equations (2-39) and (2-40)
for the Kkinetic energy and the dissipation rate, respec-
tively. Four swirl intensities: 0.0, 0.07, 0.12, and 0.18

were tested. The swirl intensity, m, is defined as:

juwrdr

m (7-1)

=Rfu2dr

where R is the inlet radius.

The velocity at the outlet of the diffuser and the
pressure recovery coefficient along the solid surfaces were
compared with the experimental data of Senoco et al. [48].
Figure 29 presents a comparison of the outlet axial velocity
across the diffuser <for the four swirl intensities. As
seen, for the non-swirling condition, i.e., m=0, predicted

values are in very good agreement with the experimental
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data. On the other hand, socme disagreement is observed as
the swirling intensity is increased. The circumferential
velocity at the cutlet of the diffuser for different swirl
intensities is shown in Figure 30. Although most of the
predictions are adeguate, the disagreement is as large as
50% at some portions ¢f the duct. The variation of pressure
recovery cecefiicient with swirl intensity is shown in Figure
31. The préssure recovery coefficient, a measure of the
efTiciency of the diffuser, i1s defined as the ratio of the
Aifference of the static pressure at the inlet and outlet to
the inlet dynamic pressure of the mean axial velocity. The
rredicticns are in good agreement with the experimental data
for lower values ¢f swirl intensity. Beyond a swirl inten-
sity of approximeztely 0.1, the computations give smaller

values than those measuresd. Errors at high swirl intensi-

ot

ies stem from sSeveral pcssibilities, e.g., inlet boundary

condition data, the numerical method used in the calculation

cirocedure, and perhaps, most importantly, the turbulence
model. The pressure ccefficient 1s very sensitive to the

inlet wvelocity profile, particularly the thickness of the
boundary layer. Experimental studies [50] have already
showr <that as *he Loundary layer thickness 1is increased,
diffuser #fficiency decreases. A computation using a uni-
form velocity profile (no boundary layer) at the inlet
resulted in +the pressure recovery coefficient being much
larger than the values measured. By changing the profile

toward one possessing a thicker boundary layer, the coeffi-



cient was found to be dramatically reduced. In regards to

the turbiilen

QO

e mcdel, Hakib and Whitelaw [10] and Sturgess
anrd Syed [51] have reported that for complicated swirling

flow conditions, the k-¢ turbulence model is not adeguate to

describe the flcw behavior accurately. This 1is due to
strong curvature effects, brocught about by rapid changes of

the flow in the axial direction, which give rise to an extra
rate of stréin in addition to simple shear. This effect
ma¥es the asszumptions regarding the constant Cu and iso-
tropic turbulence, used in the construction of the turbu-
lernce medel, invaiid. Modifications of the current model to
account for this effect have been proposed, e.g., [51], but
still require fuvrther validation.

Axial velncity contours for non-swirling flow, m = 0,

and for the largest swirling flow condition, m=C.18, are

plotted in Figures 32 and 33. These plots show that the two
cases [ave completely different flowfields. In 1lightly

swirling flows, the fluid is pressed toward the wall and
surpresses the formation of separation. This effect
enhances the fluld mixing near the boundary and decreases
the boundary layer thickness. As a consequence, the pres-

Pl

"

e recove

1

y i3 lncreased. However, when the swirl inten-

sity 1s greatly elevated, a recirculation zone will be cre-

%
e

ated along +*the center line. The central recirculation
bubble reduces the effective c¢ross sectional area and
results in a low pressure recovery coefficient. The maximum

efficiency of the diffuser 1is c¢btained by trading off the
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effects between boundary layer thickness and the effective
flow area brought about by swirl. As shown in Figure 29,
the optimum swirl number for the maximum pressure recovery
coefficient is approximately 0.12, for both the predicted
and measured flows.

The bifurcated combustor prediffuser is designed to
provide maximum efficiency, in terms of the pressure recov-
ery, for the shortest length. A bifurcated diffuser is
illustrated 1in Fiqgure 34. The diffuser divides the flow
into two parallel passages and directs almost equal amounts
of flow to corresponding combustor chambers.

The flow simulaticon uses the experimental inlet bound-
ary condition data of Lown et al. [52). In their experi-
ments, three different inlet velocity prcfiles were gener-
ated to test the performance of the diffuser, but only one
of them, designated as the center peaked velocity profile,
is employed in thie study. The velocity profile of the flow
at the inlet is chown in Figure 35. The average velocity at
the diffuser inlat is 27 my/sec, the Reynolds number is
approximately 2.2x10*, and the Mach number is 0.247. Since
the Mach number is below 0.3, the fluid can be treated as
incompressible. Ccmputations are performed on two levels of
grids: a 17x13 and a 3&x25. Three finite difference methods
were used: the hybrid scheme, the skew upwind scheme and the
guadratic upwind scheme. The grid distribution for the
36x25 mesh is shown in Figure 36. Since the actual diffuser

is short, cnly 2.74 irnches long, the usual boundary condi-
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tion of zerc normal gradient for dependent variables at the
exit may nct be fully realized. Thus, the exit boundary
condition is assumed to be such that the second derivative
of each variable with respect to § is zero. The velocity
components at the outlet of both ducts are extrapolated from
inner values and adjusted tc satisfy the overall mass con-
servation. It is noted that flow rates through the inner
duct and the outer duct were not specified, but rather were
permitted to seek 1ndividual balances.

The velocity contours are plotted in Figures 37 and 38
for different numerical schemes on the two grid systems con-
sidered. The velocity was normalized by the average of the
inlet velocity. Tha profiles computed by the skew upwind
scheme and by the hybrid scheme were found to be very simi-
lar. This is expected since the coordinates were generated
almost parallel ¢to the streamlines; thus, the diffusion
error arising from the streamline-grid~skewness was mini-
mized. The resuits obtained by using the gquadratic scheme
show less diffusion in the radial direction than the other
two schemes. The velocities at both diffuser outlets are
plotted against the experimental data in Figures 39 and 40
for the 17x12 and the 38x25 grids, respectively. The exper-
imental data was scaled s0o as to have the same basis as that
used in the simulatiorn. The predicted distributions are
seen to agree fairly well with the measurements. The com-

puted mass flow rates through the inner duct and the outer

duct are compared with the measured values in Table 4. Pre-
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dicted wvalues are all rather <close to the measured
distributions: 48% through the outer duct and the remaining
52% through the inner duct. It is worth mentioning that,
even on the coarse grid, the ratio of the mass division is
predicted very well. Also, the velocity profiles at the
diffuser outlet predicted on the coarse mesh were found to
be more consistent with the experimental wvalues than those
predicted on':he finer mesh. The flow streamlines and the
velocity vectors cbtained from using the hybrid scheme on
the 36x25 grid are shown in Figures 41 and 42, respectively.
The pressure distributions as predicted on the fine mesh for
the three differencing schemes are shown in Figure 43.
Examination of this figure reveals that all three schemes
produce similar patterns, except near the outlet of the
cuter duct, where the gquadratic upwind shows a small pres-
sure drop due to separation. Predicted pressure coeffi-
cients along the inner and outer casings are compared with
the experimental values in Figures 44 and 45, respectively.
Prediction is very good alcng the outer casing, but the
pressure coefficient is substantially overestimated on the
inner casing. In addition, the simulation is unable to pre-
dict the pressure trough on the inner casing surface. The
trough was measured near the diffuser inlet. At this point,
it is not clear whether the disagreement is related to the
computations or attributed to some experimental difficulty.
From the several comparisons between predictions and

experimental data in combustor geometries and in diffusers,
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it may concluded that numerical accuracy depends upon many
factors. These include the coordinate system used, the tur-
bulence model and the inlet flow conditions. The various
numerical differencing schemes considered have been found to
exhibit only a minor effect on the results. The accuracy of
the results seems to involve the placement of the grid more
than the numerical scheme used. 1In spite of the deficiency
of the turb?’ence model, the flowfield is reasonably pre-
dicted even thcugh the turbulence guantities can only be
gualitatively simulated. In diffuser ‘low, a precise
description of the inlet velocity profile is necessary in

order to correctly predict the pressure recovery.

7-2 Results of Zonal Grid Calculations

The zonal grid approach will be demonstrated in -this section
for problems of flow in a 45° expansicn combustor and in a
bpifurcated diffuser. The flow geometries are +the same as
those used in previous computations for a single grid sys-
tem. The computations here are mainly used to verify the
zonal boundary scheme developed earlier and to evaluate the

effects of the finite differencing methods on the results.

7-2-1 Flow in a 45° Expansion Combustor
The flow domain of a 45° expansion combustor is divided into
two zones separated by a zonal boundary. A fine grid is

used to cover the inlet zone and the recirculation area, and
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a ccarse grid is used to cover the downstream region. The
number of grid points used in the fine grid zone is 30x21,
15%20 and 30x30, whereas in the coarse grid zone a 5x12 mesh
is used throughout. For the 15x20 and the 30x30 nets, the
grid is evenly spaced in the radial direction; however, for
the 31x21 net, the grid is clustered in the wall region.
Figures 45 and 47 show the grid distribution for the uniform
30230 ang tﬁe non-uniform 30x21 nets, respectively. The
discontinuity of c¢oordinate lines at the zone interface is
self evident. Prior testing with different computational
schemes revealed that the final solution was determined more
by how it was calculated in the upstream region than what
differencing methods were used in the downstream zone. From
this observaticn and the fact that the downstream flow is
nearly parallel to the zaxial coordinate lines, computations
were made using various differencing schemes in the fine
grid zcone, while the hybrid scheme was always applied in the
coarse grid region.

Table 5 presents the calculated reattachment lengths
for wvarious computational schemes and meshes. The hybrid
scheme produced more reliable results than did the other two
schemes. Predictions based on the skew upwind scheme are
very low, almost 30% smaller than the measured 'lengths.
The lengths predicted when using the quadratic scheme are
mixed. A possible reason for this behavior is that the
zonal interface is not handled very well at the wall region

because o0of high gradients that exist there. It was also
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thought that the grid in the downstream zone might be too
coarse. However, the mesh in the c¢oarse grid zone was
halved without appreciably affecting the results. The
velocity profiles computed on the 30x30 mesh system are
shown in Figure 48. The predictions compare favorably with
the experimental data and alsc show improvement over the
single grid results at the center portion of the duct at the
location of'L/D = 1.0, (refer to Figure 19). In the wall
region, the predicted wvelocities vary according to the dif-
ferencing method used. Cocnsequently, the estimation of the
reattachment length can be expected to differ even though

the velocity field comparison is good for most regions of

the flow. The radial distributions of turbulence intensity
at different stations are shown in Figure 49. The results

are essentially the same as those determined using a single
grid system. In particular, within the recirculation =zcne
the predictions are not in good agreement with the measured
vaules, but in the downstream region the agreement is very
good. Figures 50 to 52 depict streamline contours of the
flow, and contours of the axial wvelocity and the turbulence
intensity, respectively. The contours in each zone are
plotted independently of each other. Lines of constant
velocity and the flow streamlines are seen to be continuous
across the zonal boundary. However, small discontinuities
in the contours of the turbulence intensity may be observed
because a less accurate interpolation scheme was used for

this variable.
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7-2-2 Flow in a Bifurcated Diffuser

The bifurcated diffuser was divided into three computational
zones: an inlet zone and an upper and lower branch. Two
different grid systems were used in the computations. The
coarse grid has an 11x1S mesh in the inlet area and a 14x11
mesh in each of the upper and lower branches. The fine grid
has 16x25, 21x17, and 21x17 grid points for the inlet and
the two branches, respectively. The grid distribution for
the coarse mesh is shown in Figure 53. Because each flow
region is enclosed by a simple block, grids are more easy to
generate.

The ratio of the mass division for various differencing
methods and grid systems was first examined. The calculated
and the measured mass split ratios are listed in Table 6.
The skew upwind scheme and the hybrid scheme produced
results with less grid dependency, and were in good agree-
ment with the measured values. On the other hand, the pre-
dictions based on the guadratic scheme did not possess these
characteristics; the results were found to be better when
using the coarse grid than when using the fine grid. On the
fine grid, the mass flow rate was overpredicted in the outer
duct and wunderpredicted in the inner duct. The outlet
velocity distributions are compared in Figures 54 and 55 for
the coarse and the fine grids, respectively. It can be seen
that the predicted shape of the velocity profiles generally
agree with the experimenetal data. However, there is a dif-
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ference between predicted and measured values in the regions
near the solid wall. It is noted that in the fine grid sys-
tem, the quadratic scheme overpredicted the velcocity in the
outer duct by a significant amount in the central region.
Accordingly, the mass flow rate is overestimated as shown in
Table 6. The velocity contours for three differencing meth-
ods are presented in Figure 56 for the coarse mesh and Fig-
ure 57 for éhe fine mesh. The flow patterns are generally
the same as those produced using a single grid system, but
possess less diffusion in the radial direction. The con-
tours are observed to be continuous at most locations across
zcnal boundaries. Some discontinuities are seen near the
sclid wall of the outer duct when using the coarse grids.
In that region, the velocity variation is large and the
grids are too coarse to obtain accurate transfer of the
required informatin. Comparing the velocity contours com-
puted on the two different grid systems, it is found that
the predictions using the hybrid scheme are more consistent
than those using the other two schemes. When using the
quadratic upwind scheme and the skew upwind scheme, the
velocity pattern possesses a considerable change in the
upper duct at the position the duct splits and also near the
exit. Lines of constant pressure in two different mesh sys-
tems are shown in Figures 58 and 59. Some discontinuity was
observed at the position where the ducts divide. The pres-
sure gradients in this region are very large. Figure 59

also reveals that the pressure distributions are not quite
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the same when using fine grid points. The reason is
believed due to the nature of the pressure correction egua-
tion, which is known not to provide good correction of the
pressure 'even though 1t corrects the velocity field very
well [40]. Running in a fine grid system, it is found that
the rate of convergence cof the pressure field is much slower
than that of the velocity field. Thus, even though the cor-
rect velocit} field and the mass balance in each grid cell
are obtained, a correct pressure field may not be completely
established.

In this section it has been demonstrated that zonal
grid calculations are capable of producing results of the
same guality as those using a single grid system. The zonal
approach has the additional advantage of permitting an opti-
mized grid distribution by placing only necessary grid
points in high gradient regions for <the best resolution.
Unfortunately, the computation, when crossing a zone inter-
face, requires either integration or interpolation to update
the boundary points c¢f another zone. This additional proce-
dure requires extra computer time which tends to offset the

savings from using less grid points.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

Turbulent flows in different combustor and diffuser geome-
tries were predicted using the k-¢ turbulence mcdel and dif-
ferent numerical methods. In addition to a body-fitted
cocrdinate transformation, a zonal method that partitioned
the entire flow field into a number of subsecticns each hav-
ing its own grid density and local computational scheme was
incorporated for better utilization of the overall grid
points. Whenever possible, comparisons have been made with
existing experimental data, and have yielded good results.

From the foregoing computations and analyses, the following

conclusions and recommendations can be stated:

1. A numerical code for two-dimensional axisymmetrical tur-
bulent flows has been developed to successfully describe
the flow occurring in different configurations of combu-
stors and diffusers;

2. A conservative zonal boundary scheme was developed for
discontinuous grid calculations. The zonal boundary
scheme was numerically stable in several test cases and
permitted flow properties to be transferred smoothly
across the zonal interface. The results demonstrated the
capability of using the zonal approach in solving more

complicated flow problems;

78



Numerical accuracy has been evaulated through the use of
various computatiocnal schemes including hybrid, quadratic
and skew upwind schemes. Basically, all three schemes
generated comparable results on the same grid systems.
With different grid systems, the predictions were varied.
The number of grid points used was limited due to com-
puter time and space; further refinement of the grids
using a large computer is sugygested for better results;
Although velocity and pressure fields were reasonably
predicted by thsz i-¢ mcdel, this model was found to be
inadequate to describe the behavior of the turbulence
gquantities. Additional improvements in the k-t model or
the use cf more advanced Reynolds stress models are nec-
essary for a better prediction of turbulence properties;
The computer code develcped is limited to imcompressible,
isothermal £flows. To fully describe the phenomena of
momentum, heat and mass transport in a combustion cham-
ber, it 1is recommended that an energy equation and spec-
ies continuity esquations with apprepriate chemical reac-

tions should be incorporated into the program.
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APPENDIX A
Implementation of Numerical Schemes

in this section, the workable form for computing_the coeffi-
cients of the finite difference version of the general gov-
erning eguation will be derived. The main concern is to
estimate accurate values of the dependent variables at the
surface c¢f the control volume while avoiding the instabili-
ties asscciated with the convective terms.

The integration of variable ¢ in Equation (4-2) over a
control volume with a center point P (refer to Figure 2)

vields:

(Chep -0 %iln) - (Cgeg - Ds%%ls =3 (A-1)
where Cez""‘Fgle De=13£"|e

Cy=orF,l, Dw=r3ra|w

Cp=orF I, 0, ==l (B-2)
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and S® has been defined in Equation (5-7). Integration of

the continuity equation yielas:

Ce -Cw +Cn -CS =0 (A-3)

If Equation (A-3) 1is multiplied by ¢p and subtracted from

Equation (A-1), it will give:

- - -n 3% - - .p 3¢
(Cq0 Ced’P Deasle) (Cw‘bw de’P 0

e’e
(A-4)
- - 3¢ 1 v s~ - - a9 =c?
* (Cn¢n cn¢P D, an[n’ WLgtg csd’P Ds anls) =3

Equation (&-4) is <the form to which different numerical
schemes will be applied. For simplicity, only the coeffi-
cient associated with the flux on the west face of the con-
trol volume will be derived. The formulation on the other
faces can be obtained in the same manner. Three differenc-
ing methods have been considered, viz., hybrid, quadratic

upwind and skew upwind.

I. Hybrid Scheme

The hybrid scheme takes the upwind value and neglects
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the diffusion term when the IPel 2 2
;otherwise central differencing is used for both convection
and diffusion. Applying this relation to the west face, the

flux becomes:

Flux], = €, (4 - ¢p) Py > 2
0 Pe< 2 (A-5)
c
W \ .
(5 +D,)(ay - ¢p) |Pel <2

A compact form of Equation (A-5) is written as:
F]uxw = AN (¢w°¢p)

C. Cu
where A = L?-+max(0w .Ijrl)] (A-6)

II. Quadratic Upwind Scheme

This method has been used in many investigations, but
most do not mention the details of how the scheme might be
implementated intoc a computer code. In the current study,
the method, as described by Shyy and Correa [12], was
applied. Substituting Egquation (5-22) of the variable ¢,
into Equation (A-1) for the flux at the west face of a con-

trol volume yields
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3 W
(3 C,* Dw)(¢w-¢p)+-§(¢p-¢ww) u, >0
(A=7)
(e v Yoy - 05) + o - o0) <0
g Cw T VWil ) Ygley - e Uy
A compact form for the flux is written as:
[&-4-0 P L max (C 0)]¢ - ¢pn)
3 W 2 X w '’ \¢N p’
CW Cw
+ [max(5 5 0)(op - ¢yy) - max( -5, 0)(ey~¢p)] (A-8)

In practice, the first term constitutes the coefficient Ay,
and the second term is moved to the right hand side of the
equation and is combined with the source term.
I1II. Skew upwind scheme

A general fcrm will not be derived here since a formula
taking all the flcw directions and angles into account is
difficult to generate. Instead, the coefficient of Ay is
determined individually for different u and v. Four differ-

ent combinations of u and v are considered:

SW

88



(1) whenu 20 and v 2 0
In this condition, the upwind value falls between ¢sw

and ¢w, and ¢ is taken to be

¢w=a¢’sw+(]'a)¢w (A=-9)

where a is a proportionality constant. The maximum value of
a is set equal to one, so the upwind point is never beyond

the control volume and a is confined by

a= min(—, 1) (A-10)

Applying Equation (A-9) to the flux term, it becocmes:

Flux|, = (€, +D Moy, -¢p) +Calog, -¢y) (A-11)

For other combinations of u and v, the resulting coeffi-
cients of Ay, are expressed without comment as follows:

(2) when u 2 0 and v < O

¢w=°°NN+(1 'u)¢w (A-lZ)
o= min(=22—,1) (A-13)
NW W
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Flux|, = (C +D ), - dp) +C a(oy, - o,) (A-14)

(3) when u < 0 and v 2 0O

o, oyt (1-a)ep (A-15)

a = min(—P__—b, 1) (A-16)
PS

Flux], =D (6, -ep) +C a (6, - dg) (A-17)

(4) when u < 0 and v < 0

o, =ady*t (1 -a)ep (A-18)

a = min(—, 1) (A-19)
NP

Flux|w=Dw(¢w-¢p)+cwu(¢p-¢w) (A-20)

For each face of the control volume, only one of above rela-
tions exists. The term with (¢w - ¢P) forms the coefficient
Ay, and the other term containing e is included in the

source term on the right hand side of the equation.
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Table 1. Reattachment length for flow in a sudden expansion
combustor; Re = 2.5x105

Measurement [46]: L/D = 4.7

Grid ' 40x20
Method ™
Hybrid 4.24
Skew 4.04
Quadratic 4.23
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Table 2. Reattachment length for flow in a 45° expansion
combustor; Re = 2.5x10°
Measurement [46]: L/D = 4.5
Grid 20xz20 40x21 46x29
Method grid I grid I grid II grid I
Hybrid 3.68 4.19 4.07 4.19
Skew 3.67 3.04 - -
Quadratic 3.36 4.05 4.02 4.72
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Number of 4terations

Table 3. Number of iterations and compututational time for
flow in a 45° expansion combustor

Grid 20%20 40x21 46x29
Method grad I grid I grid II grid I
Hybrid 37 422 816 950
Skew 300 522 - -
Quadratic 277 392 720 720
Computaticnal time

Grid 20x20C 40x21 46x29
Method grid I grid I grid I1 grid I
Hybrid 11' 8" 25'15"" 41's8""' gg' 8'
Skew s'22"" 34'10"" - -
Quadratic g'22"" 24'31"" 44' 6'' 67'25""




Table 4. Mass split ratio in a bifurcated diffuser;
Re = 2.2x10°

Measurement [52]: outer duct: 48% inner duct: 52%
Grid 17x13 36x25

Metho outer inner outer inner

Hybrid 7.3 52.7 49.4 50.6

Skew 47.3 52.7 49.2 50.8

Quadratic 47 .4 52.6 49.0 51.0
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Table 5. Reattachment length for flow in a 45° expansion
combustor (zoned grid calculation)

Measurement [46]: L/D = 4.5

.Grid 15x20, 5x12 30x30, 5x12
Method
Hybrid 3.88 4.14
Skew 3.15 3.35
Quadratic 4. 84 3.95
Crid 30x21(nen~-uniform), 5x12
Metho
Hybrid 4.01
Quadratic 4.46

95



Table 6. Mass

split

grid calculation)

ratio in a bifurcated diffuser

(zoned

Measurement [52]: ocuter duct: 48Y% inner duct: 529
Grid 11x15, 14x11, 14x11 16x25, 27x15, 27x15
Metho outer inner outer inner
Hybrid 48.1 51.9 46.3 53.7
Skew 47.2 52.8 48.6 51.4
Quadratic 46.8 53.2 51.2 48 .8
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The grid network in the wall region
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Figure 4. Unit tangent vectors
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Figure 9. Zonal boundary scheme for updating coarse grid
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Figure 16. Velocity field in a sudden expansion combustor
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Figure 42. Velocity field for flow in a bifurcated diffuser
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